Scientists have created the heaviest antimatter atoms in history

An international team of scientists has produced the heaviest antimatter atoms ever created in a collider on Earth. The antihyperhydrogen-4 antisubstance originated from the RHIC facility at Brookhaven National Laboratory. The study was led by Chinese scientists who reported the achievement. This is a step towards new knowledge that will help humanity move forward in its development.

Image source: Institute of Modern Physics, China

The study of antimatter provides approaches to the search for new physics or to explaining the imbalance in the ratio of matter and antimatter that arose shortly after the Big Bang. If there were equal amounts of matter and antimatter, or if they were completely identical except for the sign of charge, then the Universe would not have arisen. There would be mutual annihilation of matter and antimatter with the release of energy. Meanwhile, we observe the material Universe around us, and antimatter, if found in nature, is in extremely rare cases. It is mainly produced in laboratories, including particle collisions in colliders.

Alternatively, an assumption arose that matter and antimatter may differ in properties that are still elusive to our instruments, and not just in charge polarity. This is why it is so important to conduct experiments at colliders, studying all available parameters of antimatter in a wide range of substances. The production of atoms (nuclei) of antihyperhydrogen-4 at the RHIC collider is one of such experiments, making it possible to measure the mass, energy and other properties of this particular antimatter for comparison with ordinary hyperhydrogen-4.

The atoms of antihyperhydrogen-4 obtained as a result of the work of the RHIC collider consist of an antiproton, two antineutrons and an antihyperon. The latter are rare in experiments (like hyperons), but, in fact, they are slightly heavier versions of the antineutron. Hyperons and antihyperons have a very short lifetime – about one tenth of a nanosecond. Therefore, antihyperhydrogen-4 nuclei themselves are not detected on recording equipment. But traces of their decay (tracks) remain, from which the original picture can be restored.

Out of 6.6 billion collisions, only 16 antihyperhydrogen-4 nuclei were confidently identified. This is not much, but it is enough to evaluate their properties. Researchers will continue experiments to collect more data on this antimatter – so far the heaviest that has been obtained at the collider. This will help test our physical theories and, perhaps, indicate a new direction for their development if we can learn something new and unusual about antimatter.

admin

Share
Published by
admin

Recent Posts

TSMC CEO Reminds Compatriots That the Company Will Build 11 New Enterprises in Taiwan This Year Alone

The buzz surrounding TSMC's plans to increase its investment in the US by $100 billion…

39 minutes ago

The graphics card market showed growth last quarter, but the long-term outlook is weak

According to a new report from analyst firm Jon Peddie Research, the global market for…

49 minutes ago

Solar film has been printed in rolls like wallpaper

British company Power Roll, together with scientists from the University of Sheffield, reported progress in…

2 hours ago

By 2030, console gaming will leave PC gaming far behind, but mobile games will be in the lead

Apparently, in the near future the eternal dispute about what is more popular - games…

5 hours ago

Defective GPUs May Have Leaked Into GeForce RTX 50 Series Laptops — Now They Won’t Be Released on Time

According to German publication Heise, laptop manufacturers are working hard to thoroughly test new models…

6 hours ago

Robocop Returns in Unfinished Business Story DLC for RoboCop: Rogue City — Details and First Gameplay

Publisher Nacon and developers from the Polish studio Teyon (Terminator: Resistance) presented Unfinished Business -…

7 hours ago