Traces of dark matter can be on everyone’s desk, scientists said and told how to look for them.

It is known that it is most convenient to look for lost keys under a lamp, and not where they were lost. This is roughly how one can characterize the method of searching for dark matter proposed by Virginia Tech physicist Vsevolod Ivanov. A scientist has developed a technique for detecting traces of dark matter in billions of years old earth rocks without accelerators, space telescopes or other instruments for observing the Universe.

Image source: AI generation Kandinsky 3.1/3DNews

Traces of dark matter can be found in an earthly laboratory under generally comfortable conditions. Like under the proverbial lantern. Strictly speaking, this idea of ​​paleodetection arose about forty years ago. But then it was impossible to implement it as an experiment. Scientists have suggested that at the stage of the formation of the Earth, its rocks, one way or another, interacted with dark matter. It should be said right away that in this way the researchers intend to look for traces of a hypothetical WIMP particle (WIMP).

WIMPs, if they exist in nature as the embodiment of dark matter, interact with matter by gravity and the weak nuclear force. It is the latter that gives a chance to detect traces of WIMPs. When interacting with terrestrial rock materials during the formation of our planet, WIMPs would have left a mark in their crystal lattices, creating characteristic defects in them. These defects can be attempted to be identified using visualization and 3D modeling. The most promising method has proven to be microbiological imaging, which is used to model the smallest details of the animal nervous system.

Another problem was radiation. Ancient rocks emit strong radiation, creating signals that mask potential traces of dark matter interacting with the atoms and nuclei of rocks. To get around this difficulty, scientists proposed studying the weakly radioactive sedimentary rocks halite. Such rocks, for example, include ordinary rock salt.

«The team has already begun creating 3D images of high-energy particle tracks in synthetic lithium fluoride. This artificial crystal will not make a good dark matter detector, but it will help establish the full spectrum of signals while keeping the crystal intact,” said Patrick Huber, a physicist at Virginia Tech.

admin

Share
Published by
admin

Recent Posts

Leak: an improved version of Divinity: Original Sin 2 from the creators of Baldur’s Gate 3 heads for new platforms

In recent years, all the talk around Larian Studios has been about Baldur’s Gate 3,…

25 mins ago

The world’s first 240W USB Type-C charger goes on sale

Delta Electronics has introduced the ADP-240KB charger, which supports USB Type-C Power Delivery (USB-PD) charging…

25 mins ago

Digital Foundry experts tested Elden Ring on PS5 Pro – there are no stable 60 fps, but there is good news

Launching on November 7th, the PS5 Pro console should provide a performance boost to existing…

49 mins ago

Scientists have discovered when young stars lose their chance to acquire planets

Not all stars are lucky enough to have their own brood of planets. Conditions may…

3 hours ago